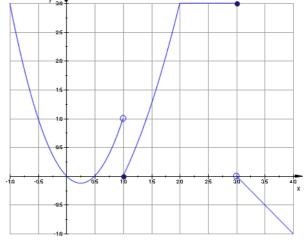
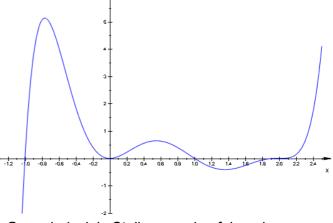
Wochenplanaufgaben zu Monotonie und Extremstellen

- 1. Gegeben ist in der nebenstehenden Graphik der Graph einer Funktion, die im Intervall [-1,4] definiert ist.
 - a) Gebe die Intervalle an, in denen der Funktionsgraph monoton steigend, streng monoton steigend, monoton fallend bzw. streng monoton fallend ist.
 - b) Untersuche den Graphen auf lokale, globale und Randextremstellen und gebe diese begründet an.
 - Begründe, an welchen Stellen im Definitionsbereich der Funktion die Funktion nicht stetig ist.
 - d) Skizziere in die Graphik den Graph der Ableitung der Funktion.



- In der nebenstehenden Graphik ist der Graph der Ableitung einer Funktion dargestellt.
 - a) An welchen Stellen muss der Graph der Originalfunktion Extremstellen besitzen.
 Entscheide und begründe, welcher Art diese Extremstellen sind?
 - b) Skizziere in die Graphik einen möglichen Verlauf der Originalfunktion.



- 3. Nimm durch begründete Beispiele oder Gegenbeispiele Stellung zu den folgenden Aussagen:
 - a) Wenn $f'(x_e) = 0$ dann ist in x_e eine Extremstelle einer differenzierbaren Funktion f
 - b) Wenn x_e eine Extremstelle einer differenzierbaren Funktion ist dann gilt: $f'(x_e) = 0$
 - c) Wenn x_e eine Extremstelle einer differenzierbaren Funktion ist dann gilt: $f'(x_e) = 0$ und $f''(x_e) <> 0$
 - d) Wenn $f'(x_e) = 0$ und f' einen Vorzeichenwechsel in x_e durchführt dann ist in x_e eine Extremstelle einer differenzierbaren Funktion f
- 4. Bestimme alle Extremstellen der Funktion f mit $f(x)=3\cdot x^3+5\cdot x^2+1$ und $x\in\mathbb{R}$. Wende als hinreichende Bedingung sowohl das Vorzeichenwechselkriterium als auch das Kriterium mit der 2. Ableitung an und überprüfe Deine Ergebnisse durch Zeichnen des Graphen.
- 5. Gegeben ist nun die Schar von Funktionen f_a mit $f_a(x) = a \cdot x^3 + x^2 und \ x \in \mathbb{R}$, $a \in \mathbb{R}$
 - a) Erstelle eine Animation des Graphen der Funktionenschar und beobachte, wie sich die Lage des Hochpunktes mit der Variation von a verändert.
 - b) Untersuche die Funktionenschar auf Extremstellen und weise nach, dass es für alle a nur jeweils einen lokalen Hochpunkt gibt. Bestimme diesen Hochpunkt.
 - c) Zeige, dass der Hochpunkt der Funktionen sich auf der Ortskurve K mit $K(x) = \frac{x^2}{3}$ bewegt, wenn a animiert wird. Überprüfe in einer Graphik.